Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter
نویسندگان
چکیده
Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM) from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM in seawater samples prior to entering the sponge (inhalant reef water), in samples exiting the sponge (exhalent seawater), and in samples collected just outside the reef area (off reef seawater). Samples were collected from two sponge species, Ircinia campana and Spheciospongia vesparium, on a near-shore hard bottom reef in the Florida Keys. Metabolic profiles generated from untargeted metabolomics analysis indicated that many more compounds were enhanced in the exhalent samples than in the inhalant samples. Targeted metabolomics analysis revealed differences in diversity and concentration of metabolites between exhalent and off reef seawater. For example, most of the nucleosides were enriched in the exhalent seawater, while the aromatic amino acids, caffeine and the nucleoside xanthosine were elevated in the off reef water samples. Although the metabolic profile of the exhalent seawater was unique, the impact of sponge metabolism on the overall reef DOM profile was spatially limited in our study. There were also no significant differences in the metabolic profiles of exhalent water between the two sponge species, potentially indicating that there is a characteristic DOM profile in the exhalent seawater of Caribbean sponges. Additional work is needed to determine whether the impact of sponge DOM is greater in habitats with higher sponge cover and diversity. This work provides the first insight into the molecular-level impact of sponge holobiont metabolism on reef DOM and establishes a foundation for future experimental studies addressing the influence of sponge-derived DOM on chemical and ecological processes in coral reef ecosystems.
منابع مشابه
In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon
The vast majority of organic matter in the world ocean is found in the dissolved pool. However, no evidence has been demonstrated for direct uptake of bulk dissolved organic matter (DOM) by organisms other than bacteria and some invertebrate larvae. The total organic carbon (TOC) is 10–30% higher in coral reefs than in adjacent open waters. The dissolved organic carbon (DOC) accounts for .90% o...
متن کاملSubstrate Use of Pseudovibrio sp. Growing in Ultra-Oligotrophic Seawater
Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM). To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC), total dissolved n...
متن کاملChemical speciation of trace metals in seawater: a review.
The recent development of the chemical speciation of trace metals in seawater is described. The speciation studies reveal that metal ion complexation is one of the most important processes in seawater; especially, most bioactive trace metals, such as Fe(III) and Cu, exist as complexes with ligands in dissolved organic matter. The organic ligands in seawater are characterized with metal ions sel...
متن کاملCarbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton
Although the principal source of marine organic matter is phytoplankton, experimental data on carbon and nitrogen mass balance during their growth cycle are lacking. Phytoplankton from diverse taxonomic groups (Synechococcus bacillaris, Phaeocystis sp., Emiliania huxleyi, Skeletonema costatum) were grown in synthetic seawater media, and changes in particulate and dissolved carbon, nitrogen, and...
متن کاملCharacterization of Optical and Associated Properties of Marine Colored Dissolved Organic Material (CDOM) Principal Investigator: Dr. Rod G. Zika Division of Marine and Atmospheric Chemistry
Our long-term goal is to understand the factors affecting the optical characteristics of seawater. Our focus is on developing an understanding of the physical and chemical processes affecting colored dissolved organic material (CDOM), and the resultant attenuation changes in ultraviolet and visible radiation in seawater and coastal environments. The chemical constituent of seawater that absorbs...
متن کامل